Поделиться:

О знаменитости

Кэнъити Фукуи: биография


Пространственное распределение электронной плотности в ВЗМО было параллельным порядку реакционной способности молекулы. Позже, похожая корреляция была обнаружена в реакциях с нуклеофильными реагентами между реакционной способностью и распределением нижних свободных молекулярных орбиталей (НСМО). Реакционная способность свободных радикалов определялась суммарной плотностью НСМО и ВЗМО. Фукуи рассматривал этот результат как общую закономерность химических реакции, как общее ориентационное поведение. Он пытался расширить спектр соединений, к которым можно было применить подобное правило, например расширить его на органические и неорганические вещества, ароматические и алифатические, насыщенные и ненасыщенные. Он обнаружил, что спектр химических реакций можно расширить до реакций замещения, присоединения, выделения, разрыва связи, элиминирования, и образований молекулярных комплексов.

Статья Фукуи 1952 года была опубликована в том же году когда появилась важная статья Малликена по переносу заряда в донорно-акцепторных комплексах (Малликен, 1952). С работой Малликена Фукуи получил теоретическое обоснование своих результатов. Основная идея заключалась в электронной делокализации между НСМО и ВЗМО реагирующих веществ. Эти орбитали и назывались граничными.

Теория граничных орбиталей была развита во многих направлениях не только научной группой Фукуи, но и другими учеными. Полезные показатели реакционной способности, например «супер-делокализованности», происходили из этой теории и применялись в различных специальных темах, например, сравнение реакционной способности, кинетике полимеризации и структуре сополимеров, антиоксидантов, и других биохимических веществах, . Однако теория Фукуи стала привлекать огромное внимание со стороны ученых только после открытия зависимости между НСМО, ВЗМО и явлениями стереоселективности. В 1961 году в исследовании серебряных комплексов ароматических соединений была показана важность главной части граничной теории. В 1964 году Фукуи сопоставил симметрию НСМО и ВЗМО реагирующих молекул со случаем реакций циклоприсоединения. Это было результатом простого применения теории граничных орбиталей к так называемым «согласованным» двухцентровым реакциям. Более яркое освещение теория Фукуи получила у Вудворда и Хоффмана (Woodward & Hoffmann, 1965), которые использовали НСМО и ВЗМО для объяснения образования стереоспецифичных продуктов в термической циклизации и фотоциклизации сопряженных полиенов. Это открытие было первым шагом на пути установления правила стереоселективности в различных согласованных реакциях. Они интерпретировали протекание этих реакций как выполнение правила «сохранения орбитальной симметрии» (Woodward & Hoffmann, 1969).

Все результаты, объясняемые правилом Вудворда-Хоффмана, были интерпретированы Фукуи с помощью приближения теории граничных орбиталей. Однако нет сомнения в том что работа Фукуи получила широкое распространение именно благодаря работе Вудворда и Хоффмана.

Исследования взаимодействий ВЗМО-НСМО в работе по циклическому присоединению Фукуи 1964 года было применено его группой и другими учеными (Хоук, 1973) к разнообразным химическим реакциям: циклическому и ациклическому присоединению, элиминированию, регибридизации, мультициклизации, различным внутримолекулярным перегруппировкам, реакциям с бензольным кольцом, размыканию циклов и их замыканию, и т. д., включая даже термически индуцированные и фотоиндуцированные реакции. Особенно эффективной теория оказалась применительно к объяснению сложной региоселективности и различного вида вторичных стереохимических эффектов в согласованных циклоприсоединениях. Все объяснялось в терминах граничных орбиталей. Перенос заряда и изменение спина можно было объяснить с этой точки зрения. Фукуи и его коллеги расширили орбитальное взаимодействие для участия от двух до трех орбиталей. Смешивание орбиталей, поляризация и трехорбитальное взаимодействие были использованы для объяснения дальнейших более сложных экспериментов.

Комментарии

Комментарии

Добавить комментарий
Комментарий
Отправить

Бенедиктас Юодка Бенедиктас Юодка

литовский биохимик, профессор Вильнюсского университета, ректор Вильнюсского университета

Поль Эру Поль Эру

французский инженер-химик

Эмиль Эрленмейер Эмиль Эрленмейер

немецкий химик-органик, синтезировал изомасляную кислоту, гуанидин и ?-аминокислоты, установил строение спиртов и карбоновых кислот, исследовал независимо от Эльтекова перегруппировку енолов в альдегиды и кетоны, а также пинаколиновую перегруппировку, установил структурную формулу нафталина

Александр Николаевич Энгельгардт Александр Николаевич Энгельгардт

русский публицист-народник и агрохимик

Гертруда Белл Элайон Гертруда Белл Элайон

американский биохимик и фармаколог

Ханс Карл Август Симон фон Эйлер-Хельпин Ханс Карл Август Симон фон Эйлер-Хельпин

шведский биохимик, член Королевской шведской АН

Александр Шульгин Александр Шульгин

американский химик-фармаколог русского происхождения и разработчик многих психоактивных веществ

Олег Белай – жизненный путь основателя Инвестиционной группы ТРИНФИКО

Олег Белай – жизненный путь основателя Инвестиционной группы ТРИНФИКО

Дума ТВ

Дума ТВ

Евтушенков Владимир вкладывает в высокотехнологичное развитие агросектора

Евтушенков Владимир вкладывает в высокотехнологичное развитие агросектора