Поделиться:

О знаменитости

Давид Гильберт: биография


Научная биография Гильберта отчётливо распадается на периоды, посвящённые работе в какой-либо одной области математики:

  • Теория инвариантов (1885—1893).
  • Теория алгебраических чисел (1893—1898).
  • Основания геометрии (1898—1902).
  • Принцип Дирихле (математическая физика) и примыкающие к нему проблемы вариационного исчисления и дифференциальных уравнений (1900—1906).
  • Теория интегральных уравнений (1902—1912).
  • Решение проблемы Варинга в теории чисел (1908—1909).
  • Математическая физика (1910—1922).
  • Основания математики (1922—1939).

Математика

В теории инвариантов исследования Гильберта явились завершением периода бурного развития этой области математики во второй половине XIX века. Им доказана основная теорема о существовании конечного базиса системы инвариантов. Работы Гильберта по теории алгебраических чисел преобразовали эту область математики и стали исходным пунктом её последующего развития. В своём классическом обзоре он дал глубокое и содержательное изложение данного материала. Усилиями немецких математиков — Дирихле, Куммера, Кронекера, Дедекинда, затем Нётер и Минковского — была создана законченная теория делимости для числовых полей, основанная на понятиях идеала и простого идеала. Однако открытым оставался вопрос, что происходит с простым идеалом поля при включении его в «надполе», и в связи с этой трудной проблемой Гильберт ввел ряд важных новых понятий, сформулировал и частично доказал основные относящиеся сюда результаты. Полное их доказательство и дальнейшее развитие стало делом некоторых из самых выдающихся его последователей.

Новосибирская федерация парусного спорта



Все видео

В развитии теории алгебраических полей фундаментальную роль сыграла монография Гильберта «Теория полей алгебраических чисел», на десятилетия ставшая основой последующих исследований по этой теме. Среди собственных открытий Гильберта выделяется его развитие теории Галуа, в том числе важная «90-я теорема».

Данное Гильбертом решение проблемы Дирихле положило начало разработке так называемых прямых методов в вариационном исчислении.

Построенная Гильбертом теория интегральных уравнений с симметричным ядром составила одну из основ современного функционального анализа и особенно спектральной теории линейных операторов.

Гильберт сразу показал себя убеждённым сторонником канторовской теории множеств и защищал её от критики многочисленных противников. Он говорил: «Никто не изгонит нас из рая, созданного Кантором». Сам Гильберт, впрочем, эту область не разрабатывал, хотя косвенно затрагивал в трудах по функциональному анализу.

Обоснование математики

Классические «Основания геометрии» Гильберта (1899) стали образцом для дальнейших работ по аксиоматическому построению геометрии. Хотя идея построения модели одной математической структуры на базе другой использовалась и до Гильберта (например, У. Р. Гамильтоном), только Гильберт реализовал её с исчерпывающей полнотой. Он не только дал полную аксиоматику геометрии, но также детально проанализировал эту аксиоматику, доказав (построив ряд остроумных моделей) независимость каждой из своих аксиом.

К 1922 году у Гильберта сложился значительно более обширный план обоснования всей математики путём её полной формализации с последующим «метаматематическим» доказательством непротиворечивости формализованной математики. Для осуществления этой программы Гильберт разработал строгую логическую теорию доказательств, с помощью которой непротиворечивость математики свелась к доказательству непротиворечивости арифметики. При этом Гильберт использовал только общепризнанные логические средства (логику первого порядка).

Два тома «Оснований математики», написанных Гильбертом совместно с П. Бернайсом, в которых эта концепция подробно развивается, вышли в 1934-м и 1939-м годах. Первоначальные надежды Гильберта в этой области не оправдались: проблема непротиворечивости формализованных математических теорий, как показал Курт Гёдель (1931), оказалась глубже и труднее, чем Гильберт предполагал сначала. Но вся дальнейшая работа над логическими основами математики в большой мере идёт по пути, намеченному Гильбертом, и использует созданные им концепции.

Комментарии

Добавить комментарий
Комментарий
Отправить

 

Карл Якоби Карл Якоби

знаменитый немецкий математик

Симеон Пуассон Симеон Пуассон

французский математик

Джеймс Клерк Максвелл Джеймс Клерк Максвелл

английский физик и математик

Пифагор Самосский Пифагор Самосский

древнегреческий математик, философ, путешественник, создатель школы пифагорейцев

Шарль Эрмит Шарль Эрмит

французский математик, признанный лидер математиков Франции во второй половине XIX века

Агнер Краруп Эрланг Агнер Краруп Эрланг

датский математик, статистик и инженер, основатель научного направления по изучению трафика в телекоммуникационных системах и теории массового обслуживания

Шарль Эресманн Шарль Эресманн

французский математик, работавший в области дифференциальной топологии и теории категорий

Жак Эрбран Жак Эрбран

французский математик и логик

14 лет Федуна: Как менялся “Спартак”

14 лет Федуна: Как менялся “Спартак”

Почему постоянно хочется спать? Причины сонливости

Почему постоянно хочется спать? Причины сонливости

Настасья Самбурская о диетах, спорте, как изменить свое тело и свою жизнь!

Настасья Самбурская о диетах, спорте, как изменить свое тело и свою жизнь!