Поделиться:

О знаменитости

Гнеденко, Борис Владимирович: биография


В теории суммирования доказывались как интегральные предельные теоремы, то есть теоремы о сходимости ф.р., так и локальные теоремы, то есть теоремы о сходимости плотностей (для гладких распределений) и о вероятностях отдельных значений для решетчатых распределений. В 1920—1940 гг. были получены исчерпывающие результаты о ЗБЧ в классической формулировке. Отметим, что законы больших чисел в пространствах нечисловой природы, найденные в последней четверти XX в., формулировались и доказывались исходя из совсем иных подходов — не на основе суммирования, а на основе решений оптимизационных задач [6, 7].

Во всех разделах теории суммирования Б. В. получил фундаментальные результаты, пролившие свет на существо дела. Итогом развития классической теории суммирования явилась публикация в 1949 г. монографии Б. В. Гнеденко и А. Н. Колмогорова [3], которую можно назвать монументом создателям этой теории. Методы и результаты теории суммирования применяются в различных разделах теории вероятностей, статистических методов и их применений, а книга [3] остается источником новых идей для многих исследователей. Эта книга — одно из наиболее замечательных достижений математики XX века.

Предельные теоремы для крайних порядковых и разделимых статистик

Работы по предельным теоремам для крайних порядковых статистик публиковались в течение нескольких десятков лет, начиная с двадцатых годов 20 в. Среди авторов таких публикаций: Додж, фон Мизес, Фреше, Фишер и Типпет, Б. де Финетти, Гумбель. В. Б. Невзоров и другие. В этой области наиболее полные и глубокие результаты получены именно Б. В.

Пусть x1,…, xn — независимые одинаково распределенные с функцией распределения F случайные величины; тогда величины min(x1,…, xn) и max(x1,…, xn) называются крайними (или экстремальными) порядковыми статистиками, а также крайними членами вариационного ряда. Предположим, что для функции распределения F найдутся последовательности линейных преобразований шкалы измерения, для которых существуют невырожденные предельные (с ростом n) функции распределения G крайних членов преобразованной выборки Тогда согласно общей теории функция G имеет один из трех типов. Среди них широко используемое на практике распределение Вейбулла-Гнеденко [9]. Борисом Владимировичем получены необходимые и достаточные условия, относящиеся к F, чтобы получить тот или иной тип G.

Являясь выдающимся специалистом по теории суммирования независимых случайных величин, Б. В. решил результаты этой теории применить к суммированию зависимых случайных величин. Поэтому он проявил интерес [9] к таким случайным величинам, совместное распределение которых совпадает с условным совместным распределением некоторых независимых случайных величин при условии фиксации суммы последних в некоторой точке. Отправляясь от таких величин, можно построить [9] класс сумм зависимых случайных величин, называемых в отечественной литературе разделимыми статистиками. Распределения последних известным образом выражаются через распределения сумм соответствующих независимых случайных величин (векторов). Тем самым, для получения предельных (с ростом числа слагаемых) теорем для разделимых статистик надо воспользоваться результатами суммирования независимых величин или их многомерными аналогами — в случае векторов.

Теория массового обслуживания

Важным разделом современной теории вероятностей, в становление и развитие которого Б. В. внес неоценимый вклад, является теория массового обслуживания (ТМО). Первый цикл работ в этом направлении он выполнил в Иванове. В частности, он занимался изучением связи неровноты пряжи по номеру и весу, выяснением эффективности перехода от обслуживания одного станка к обслуживанию нескольких станков, оценкой длины среднего перехода между станками, который выполняет ткачиха в процессе обслуживания ткацких станков, выявлением особенностей метода станкообходов для нормирования рабочего времени станка и рабочего. Этой тематике посвящена первая книга Б. В. [10].

В опубликованной перед самой войной работе [11] Б. В. решает задачу определения среднего числа зарегистрированных счетчиком Гейгера-Мюллера частиц (известно, что в силу наличия «мертвой зоны» счетчик Гейгера-Мюллера регистрирует не все попадающие в него частицы). В терминах ТМО рассматриваемая модель может быть описана как однолинейная СМО с потерями, нестационарным пуассоновским входящим потоком и постоянным временем обслуживания. Заметим, что и к настоящему времени СМО с нестационарным входящим потоком исследованы крайне мало.

Комментарии

Комментарии

Добавить комментарий
Комментарий
Отправить

Карл Якоби Карл Якоби

знаменитый немецкий математик

Симеон Пуассон Симеон Пуассон

французский математик

Джеймс Клерк Максвелл Джеймс Клерк Максвелл

английский физик и математик

Пифагор Самосский Пифагор Самосский

древнегреческий математик, философ, путешественник, создатель школы пифагорейцев

Шарль Эрмит Шарль Эрмит

французский математик, признанный лидер математиков Франции во второй половине XIX века

Агнер Краруп Эрланг Агнер Краруп Эрланг

датский математик, статистик и инженер, основатель научного направления по изучению трафика в телекоммуникационных системах и теории массового обслуживания

Шарль Эресманн Шарль Эресманн

французский математик, работавший в области дифференциальной топологии и теории категорий

Жак Эрбран Жак Эрбран

французский математик и логик

Олег Белай – жизненный путь основателя Инвестиционной группы ТРИНФИКО

Олег Белай – жизненный путь основателя Инвестиционной группы ТРИНФИКО

Дума ТВ

Дума ТВ

Евтушенков Владимир вкладывает в высокотехнологичное развитие агросектора

Евтушенков Владимир вкладывает в высокотехнологичное развитие агросектора